domingo, 18 de maio de 2014

\oint_{\gamma} f(z) \,dz = F(\gamma(b)) - F(\gamma(a))./ 1+ \oint_{\gamma} f(z) \,dz = F(\gamma(b)) - F(\gamma(a))./ 2+\oint_{\gamma} f(z) \,dz = F(\gamma(b)) - F(\gamma(a))./ n...+\oint_{\gamma} f(z) \,dz = F(\gamma(b)) - F(\gamma(a)).







F(x) = \int_a^x f(t)\, dt / 1+ F(x) = \int_a^x f(t)\, dt / 2+ F(x) = \int_a^x f(t)\, dt /n...+F(x) = \int_a^x f(t)\, dt






F(b) - F(a) = \int_{a}^{b} f(x)\,dx / 1+ F(b) - F(a) = \int_{a}^{b} f(x)\,dx /2+ F(b) - F(a) = \int_{a}^{b} f(x)\,dx /n...F(b) - F(a) = \int_{a}^{b} f(x)\,dx







f'(c)(b - a) = f(b) - f(a) \, /1 + f'(c)(b - a) = f(b) - f(a) \, / 2+ f'(c)(b - a) = f(b) - f(a) \, / n...f'(c)(b - a) = f(b) - f(a) \,








F(x)=\int_a^xf(t)\,dt / 1 + F(x)=\int_a^xf(t)\,dt / + 2 + F(x)=\int_a^xf(t)\,dt / n...F(x)=\int_a^xf(t)\,dt =

Nenhum comentário:

Postar um comentário